
r ,  1 3o Ao K. Majumdar, V. S. Pratap, and Do Bo Spalding, Numer~cai computation of flow in ro- 
tating ducts," Trans. ASME, J. Fluids Eng., 99, 148 (1977). 

4. R. Simon, R. Schilling, and K. O. Felsch, "Berechnung der ausgebi!deten turbulent Str~- 
mung in rotierenden Kanglen mit rechteckigem Querschnitt," Stroemungsmech. Stroemungs- 
masch., No. 28, 33 (1980). 

5. J. P. Johnston, "Internal flows," in: Turbulence, P. Bradshaw (ed.), Springer-Verlag, 
Berlin-~ew York (1976). 

6. J. P. Johnston, R. M. Halleen, and D. K. Lezius, "Effects of spanwise rotstion on the 
structure of two-dimensional fully developed turbulent channel flow," J. Fluid Mecho, 
5_6, 533 (1972). 

7. B. E. Launder, G. J. Reece, and W. Rodi, "Progress in the development of a Reynolds- 
stress turbulence closure," J. Fluid Mech., >8, 537 (1975). 

8. R. M. C. So, "A turbulence velocity scale for curved shear flows, '~ J. Fluid Mech., 70, 
37 (1975). 

9. M. Mo Gibson, "An algebraic stress and heat-flux model for turbulent shear flow with 
streamline curvature," Int. J. Heat Mass Transfer, 21, 1609 (1978). 

i0. V. V. Ris and S. A. Smirnov, "Influence of the entrance conditions on the development of 
turbulent flow in a rotating channel," in: Structure of Turbulent Flows [in Russian], 
Minsk (1982). 

Ii. D. K. Leziusand J. P. Johnston, "Roll-cell instabilities in rotating laminar and turbu- 
lent channel flows," J. Fluid Mech., 77, 153 (1976). 

12. I. A. Hunt and P. N. Joubert, "Effects of small streamline curvature on turbulent duct 
flow," J. Fluid Mech., 91, 633 (1979). 

13. V. K. Shchukin, Heat Exchange and Hydrodynamics of Internal Streams in Mass Force Fields 
[in Russian]~. Mashinostroenie, Moscow (1980). 

14. E. DUbner, "Uber den Str~mungswiderstand in einem rotierenden Kanal," Dissertation,Techo 
Hochsch. Darmstadt (1959). 

15. G. G. Branover and A. B. Tsinober, Magnetohydrodynamics of Incompressible Media [in Rus- 
sian], Nauka, Moscow (1970). 

NUMERICAL STUDY OF L~MINARIZATION EFFECTS IN TURBULENT BOUNDARY 

LAYERS OF ACCELERATED FLOWS 

V. G. Zubkov 
UDC 532~514~4 

io Introduction. In a number of experimental data from studies of turbulent flows with 
acceleration a substantial variation is noted in the characteritics of heat transfer and fric- 
tion from the corresponding values, obtained from the relations for turbulent flows [I, 2]. 
The larger the value of the flow acceleration, the more significant the deviation of the in- 
tegral characteristics of heat transfer and friction, as well as of the profiles of mean ve- 
locities and temperature from the universal relations for the turbulent flow regime toward 
dependences corresponding to the laminar regime. This effect became called laminarization of 
turbulent flows. 

It is possible to estimate the generation condition of laminarization within tlhe first 
approximation by means of the acceleration parameter K = (~/U~)dU /dx, characterizing the 
extent of flow acceleration~ It has been established that lowering of the heat transfer pa- 
rameters starts being noticed in flows with K > 2,10 -~. This parameter, however, does not al- 
low quantitative estimation of effects generated by laminarization. 

Account of the variation in the structure of turbulent flows under the action of accel- 
erated flow makes it possible to approach more correctly the projection of various construc- 
tions~ For example, for an external flow, when the gas flow between turbine blades and in 
supersonic nozzles an inverse flow transition can cause lowering of heat transfer between the 
heating gas flow and the construction surface. In heat transfer instruments, when the heat 
transfer intensity must be largest, a similar effect leads to undesirable results. This gen- 
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erates the necessity of creating a calculation result, capable of describing variations in the 
flow parameters under the action of a negative pressure gradient. 

Following Boussinesq, the tangent stress of turbulent friction in planar flow is deter- 
mined by the relation -- <u'v'> = %IT~U/3y , where ~T is the coefficient of turbulent momentum 
exchange. Similarly, one determines the turbulent heat transfer -C p<v'T'> = IT3T/~y , where l T 
is the coefficient of turbulent heat conductivity, related to ~T ~hrough the turbulent Prandtl 
number Pr T = C ~T/IT Thus, all difficulties in determining the unknown fluctuating components p 
of the boundary layer equations are shifted to the search of the coefficient DT' for whose de- 
termination one must employ further hypotheses. 

2. Hypothesis of Path Length Mixing. The simplest method of determining ~T is based on 
using the hypothesis of path length mixing, suggested by Prandtl 

~, = p l ~ l o u , ' o y j .  (2.1) 

In the external boundary layer region the path length mixing I is proportional to the boundary 
layer thickness I = B~. In the immediate neighborhood of the streamline surface I is assumed 
proportional to the transverse coordinate, and by means of the correction introduced by Van 
Driest [3] is determined by the equation 

l ky[i -- exp(~y,/A%)], (2 .2 )  

where  A;  = 26 i s  t he  Van D r i e s t  c o n s t a n t .  

The system of differential equations, closed on the basis of the hypothesis of path length 
mixing and describing the turbulent boundary layer, was solved in the present study by a finite 
difference method. The validity of this turbulence model in describing laminarization effects 
was estimated by comparing the calculations with the experimental data of [i] (Fig. i, where 
the points are experiment, and curve 1 corresponds to calculations). It follows from Fig. 1 
that in the flow acceleration region the calculated values of the Stanton number significantly 
exceed the experimental values. 

If the parameter A§ in Eq. (2.2) is interpreted as a dimensionless viscous sublayer thick- 
ness, in the region of acceleration action, where, according to experimental data, the relative 
viscous sublayer thickness increases, the value of the parameter A§ must also increase. In the 
present study we analyzed the following dependences of the parameter A+ on the amount of flow 

acceleration: 

A T = a% V ~ ( ~  + ~i?8p+) -1/2 [~]; (2 .3)  

A+ = A ~ ( i  + 30. i8P+) -1 [51; (2 .4 )  

A+ I A~' ' L* <~ i '9"i03'  ( 2 .5 )  
= [ i l  + 7,9. t03L, ,  L ,  > i ,9 . i03 [6], 

where P+ = --K(Cf/2) -s/2 is the dimensionless pressure gradient, and L, = KCf is the laminariza- 

tion parameter. 

At the initial stage of flow acceleration the results of performing calculations by using 
(2.3)-(2.5), curves 2-4 of Fig. i, coincide with the experimental data. Below the flows, how- 
ever, as follows from the curves, the deviation between calculation and experiment in the lam- 
inarization region increases. This result can be explained as follows. When the action of 
flow acceleration is discontinued, according to Eqs. (2.3)-(2.5) the parameter A+ stops vary- 
ing, and becomes again constant. At the same time the relative viscous sublayer thickness con- 
tinues increasing until some distance below the flow [7]. 

3. The e -- ~ Turbulence Model. It is more justified to establish the laws regulating 
the mechanism of turbulent transfer, which allows the idea of connection between the coeffi- 
cient of bulk turbulence, the kinetic energy of turbulent motion e, and the turbulence scale 
L, first predicted by Kolmogorov [8], and independently suggested by Prandtl [9]: 

~ = pC~ ~7 L. (3 .  i) 

The magnitude of the kinetic energy of turbulent motion is determined as a result of solving 
the differential equation of turbulent intensity, which for the case of stationary planar flow 

is written in the form 
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Oe 0 ( Oe "~ 0 , OU 
PU-~7 + 9 V ~  = 0-7 ~-aT)---a7 [<v (p' + Pc)>] --P<U'U'>-aT--P~" (3.2) 

New unknowns appear, however, with the introduction of (3.1), (3.2), which must be determined 
from the experimental data so as to achieve closure of the boundary layer equations. 

Based on the Ko!mogorov similarity hypothesis [i0], a connection can be obtained between 
the values of dissipation and turbulence intensity for the case of large turbulent Reynolds 
numbers: 

: ~eal2/L. (3.3) 

In the case of flow with small Reynolds numbers (R T = e2/v~ < i0 3) the coefficient ~ in Eq. 
(3.3) is not a constant quantity, but depends on R T. A similar connection makes it possible 
to eliminate from consideration the integral turbulence scale, and to determine the coefficient 
of turbulent exchange from the equation 

~T : C~ ~R T. (3.4) 

An additional equation, describing the variation of the magnitude of kinetic energy dis- 
sipation of fluctuating motion, is obtained for the case of locally isotropic turbulence by a 
derivation from the Navier-Stokes equation [Ii]. The unknown terms of this equation, contain- 
ing velocity correlation components of second and higher order, are determined by dhnension- 
ality considerations and on the basis of experimental data in terms of the mean flow parame- 
ters, the turbulence intensity, dissipation, and the closure parameters. For the case of 
planar stationary flow of a compressible fluid the dissipation equation is written in the form 
[12] 

9~--a7 + pV ~ + + CLOT-- U C2 (3.5) ay ay ~ ~ \ay]  " 

The coefficients of Eq. (3.5) and of Eq. (3.4) are functions of the turbulent Reynolds 
number. In the present study they were determined on the basis of handling experimental data 
of measurements of turbulence structure in tubes [13] and boundary layers [14, 15]. Included 
were experimental data of investigating decay of homogeneous turbulence behind a lattice [16], 
when the turbulent Reynolds number varies in a wide region. The data obtained for the closure 
coefficients CI, C~, C ~ were in total agreement with the results of [12] 

The e -- ~ model closed by means of these coefficients does not allow, however, to calcu- 
late the boundary layer parameters near the surface flow. The profiles of mean and fluctuating 
flow characteristics, obtained by a calculation by this model, do not agree with the experi- 
mental data. Moreover, the calculation leads to negative values of turbulence intensities and 
of dissipation for y, <3. The reason for the deviation is that Eq. (3.5) was derived under 
the assumption of existence of conditions of locally isotropic turbulence, which are destroyed 
in the boundary region, where the turbulent Reynolds numbers are small, and, consequently, 
does not take into account the variation of fluctuating momentum transfer near the wall. 

The quantity e can be considered as the isotropic part of the total dissipation D. From 
the experimental data it has been established [17] that the total dissipation vanishes at the 
wall. Account of this fact can be either given by corresponding boundary conditions for the 
dissipation equation (3.5) at the wall (for y = 0, ~ = 2~(3~ee/~y) 2 or 3~/~y = 0), or intro- 
duced by the additional term --2D(8~e/3y) 2 in the right hand side of the turbulence intensity 
equation (3.2), as was suggested in [12]. However, the use of nonvanishing boundary condi- 
tions for the equation in the form (3.5) seems to be impossible. For e w # 0 the last term of 
the dissipation equation C2pE2/e loses its physical meaning in the wall region (for y -+ 0 it 
tends to infinity, since e w = 0). The introduction of an additional term in the turbulence 
intensity equation changes the equation for e and affects the results of the solution, there- 
fore this method was suggested in [18]. 

Attempts to take into account features of the dissipation distribution of turbulent en- 
ergy near the wall by means of a modification of the dissipation equation would be more legit- 
imate. The first step in this direction was undertaken in [18]. In the last term of Eq. 
(3.5), determining the extent of dissipation decrease, one introduces an additional function, 
restricting its increase near the wall, and it is written in the form 
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C2pe [e - -  2v(a ]/e/ay) ~}/e, 

while the boundary condition for e at the wall is written in the form Ss/$y = 0. A similar 
modification, however, seems to affect the results of the solution not only in the boundary 
layer region, but also in the external regions of the boundary layer, where the gradients of 
~he turbulence intensity can be large, particularly in the flow transition regions. 

Despite the shape differences in the turbulence intensity and dissipation equations, the 
profile calculations of U and e by the models of [12] and [18] coincide, in this case, for 
Correct description of the experimental e profiles in the boundary layer region (y, < 15) one 
i~troduces into the dissipation equation one additional correction term 2~T~(~2U/~y2)=, which 

~as not given physical justification. 

In the boundary layer model suggested in the present study the turbulence intensity and 
~issipation equations were included without introducing additional terms. To take into ac- 
Count features of turbulent transfer in the boundary layer flow region, where turbulence has 
Bn anisotropic character, we introduce into the last term of Eq. (3.5) a correction function 
~. The purpose of introducing this term is to restrict the increase of the dissipation de- 
gradation term near the wall. Consequently, the range of variation of this function is from 
0 to i. The specific shape of the function f is determined as a result of numerical experi- 
mentation by the condition of best agreement of velocity and turbulence intensity profiles with 
the experimental data of [13-16] and others. These studies contain information on the profile 
distributions of the velocity U, the fluctuating velocity components u', v', w', and of the 
turbulent tangent stress <u'v'> as a function of the transverse coordinate y. In introducing 
these original data into the turbulence intensity equation, which simplifies substantially 
near the wall due to the assumption of smallness of the convective terms in comparison with 

the others 

d-f "~ ,~UId~17f - - < u ' v ' > - - ~  = ~, 

a system of equations is obtained for the unknown function s(y), which is selected in the form 
of a third-order polynomial e(y) = a + by + cy 2 + dy 3. As a result of solving the equations 
of this system by the least squares method for each series of experiments, the dissipation 
value is determined as a function of the coordinate y. The profiles found and the experimen- 
tal data on the U, u', v', w', <u'v'> profiles are substituted into the dissipation equation 

(convective terms are also neglected) 

~-~,-~,-~j~l -c~<wv'>~j ~ k~"] dy 

as a result of whose solution the dependence f = ~(y,) is determined: 

/=--exp(--,lo)+exP( 250~ ) 
.. 25+y, 

It has not been possible to establish the dependence of the function f on Rm in the present 
study due to the substantial scatter in the data, obtained as a result of handling the various 

experiments. 

A numerical experiment was carried out to estimate the effect of the shape of boundary 
conditions for dissipation on the computation accuracy in the suggested turbulence model. It 
has been established that for the selected shapes of turbulence intensity and dissipation 
equations, as well as the closure relations, the shape of the boundary conditions for e at 
the wall does not affect the velocity, temperature, and turbulence intensity profiles. The 
U and e profiles shown in Figs. 2 and 3 were obtained by calculations by the suggested model 
with the use of the two boundary conditions e w = 2~(3~ee/Sy) 2 and gw = 0, in which case the 
calculated data coincided with each other, for which reason they are shown by a single solid 
line. ~e calculated dissipation profiles for both cases mentioned of boundary conditions 
differ only near the walls y, < 3. Taking into account that ~ this flow region the turbu- 
lent transfer coefficient ~_ is negligibly small, while the dissipation effect on the mean 

T 
flow characteristics is mostly realized precisely through it, the absence of a substantial 
:effect of boundary conditions for e on the calculation results becomes understandable. 
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The choice of the boundary condition for dissipation in the form s w = 0, and not Sw = 
2v(3~ee/3y) 2 or (3~/3y) w = 0, is due to the fact that this homogeneous boundary condition guar- 
antees most solution stability in enhancing the steps of the difference grid. 

4. Hathematical Boundary Layer Model. The system of equations describing a turbulent 
boundar---y layer, along with the closure coefficients, are 

c . u O r  or ,~[ o~] e~ .(ov~ ~ 
o---i + C.vpv ou ou (~ + ~)-~u + U-~7 + ~'\Pu ] + 0~, 

ou w + ov ~ = 0-7 (~ + ~'~) ~ + ~ t ~ ;  - o~, 

P U T / + P V - ~ y  ~ V +  ~ ) T ~ y  + C d % T \ a y ]  2 s T ,  

&=L65, c.~=2[l-0.3~xp(-R%)], oo=L3, 

C~ = 0.09 [--  exp (-- 2.5) + exp( r 
. 50  - T R T ]  ] ,  -f = - -  exp (-- 10) + exp ~ 25  -F Y~, ), 

(4.1) 

where x and y are the rectangular coordinates, respectively, along and across the flow, U and 
3 

V are the mean velocity components, e =-~- <(u'D~> is the turbulence intensity, T is the 
i : 1  3 

mean temperature, u'. are the components of the fluctuating velocity, g = v ~ <(#ui/Oxj ) .> is 
i , - 
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the dissipation, C~, C2, C , and ~ are empirical coefficients and y, = y~Tw/p/v is a dimen- 
sionless transverse coordinate, c 

The corresponding boundary conditions are taken in the form 

y = 0 ,  U = V = e  = s = 0 ,  T =  TWO),  ( 4 . 2 )  

y . - . ~ o o , ~ U / a y  = aT~by = Oetay = ~e/ay = O. 

Equations (4.1), (4.2), together with the equation of state and the relations ~ = ~(p, 
T), X = X(p, T), C = C~(p, T), R = R(p, T) were solved by computer. The original equations 
and the boundary condltmons were approximated by means of finite-difference analogs, written 
in an implicit scheme. The initial profiles were assigned by the experimental data for the 
laminar and turbulent flow regimes [19]. The system of linear equations obtained in this case 
was solved numerically. To accelerate the computational process and guarantee its accuracy 
we introduced a modified system of coordinates, guaranteeing "compression" of the transverse 
coordinate near the wall. Satisfactory computational accuracy was achieved for nongradient 
flow regimes for 40, and for accelerated flow for i00 points across the computational grid. 

5. Calculation Results. With the purpose of estimating the validity of the mathemati- 
cal boundary layer model proposed we calculated velocity profiles for various flow regimes. 

�9 . & 

A solution was realized, starting at some polnt of a planar plate in whmch Re ~ i0 , and the 
relative amount of turbulence of the running flow did not exceed 0.5%. Under'these conditions 
the boundary layer has a laminar character (curve 1 of Fig. 2 was obtained for Re x = 105 , K = 
0). When leaving the turbulent flow regime, the calculated profile of the mean velocity is 
changed (curve 2 in Fig. 2, Re x = 4.105 , K = 0), and coincides with the logarithmic distribu- 
tion law U, = 5.5 log y, + 5.45 (curve 3). In the action zone of accelerated flow the cal- 
culated velocity profile (curve 4, Re = 1.5.106 , K = 2.2.10 -6 ) is inclined toward laminar 

profiles and coincides with the expermmental data [12] for K = 2.2.10 -6 

Figure 3 shows a comparison of turbulence intensity profiles across the boundary layer 
on a planar plate, calculated by means of the present model (the solid curve) and by the mod- 
el of [12] (dashed curve), with the experimental data [14] for Rex = 4.2o106 (points). In the 
wall region the calculated profiles are below the experimental values, but the calculation by 
the proposed model provides better agreement with experiment. For y/~ > 0.i the calculated 
profiles coincide totally, therefore, they are shown in the figure by a single solid line. 

The possibilities of the suggested model in describing heat transfer in a turbulent 
boundary layer were estimated in comparison with experimental data [I] (points). As boundary 
conditionsin the calculation we used the flow velocity, as well as the temperature difference 
between the wall and the external flow, obtained experimentally. It follows from Fig. 4 that 
the calculated Stanton number for the case of thegradientless flow regime (K = 0) coincides 

with experimental data. 
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In the case of moderate flow accelerations (Kma x = 2o52,10-6), acting along a significant 
distance of the investigated surface, the calculation describes accurately the lowering region 
of heat transfer intensity. The continuous and dashed lines in Fig. 5 show calculation results 
by the proposed model and by the model of [12], respetively. Obviously, the calculation by the 
model of [12] gives substantially worse agreement with experiment. 

As follows from Fig. 6, when the flow acceleration has a short-term peak character, the 
calculation accuracy is lowered, but the mode] makes it possible to estimate correctly the 
lowered intensity of heat transfer. 
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